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ABSTRACT

A Segmented Domain Decomposition Multigrid (SDDMG)

procedure was developed for three-dimensional viscous flow

problems as they apply to turbomachinery flows. The pro-

cedure divides the computational domain into a coarse mesh

comprised of uniformly spaced cells. To resolve smaller

length scales such as the viscous layer near a surface, seg-
ments of the coarse mesh are subdivided into a finer mesh.

This is repeated until adequate resolution of the smallest

relevant length scale is obtained. Multigrid is used to com-

municate information between the different grid levels. To

test the procedure, simulation results will be presented for a

compressor and turbine cascade. These simulations are in-

tended to show the ability of the present method to generate
grid independent solutions. Comparisons with data will also

be presented. These comparisons will further demonstrate

the usefulness of the present work for they allow an estimate

of the accuracy of the flow modeling equations independent
of error attributed to numerical discretization.

INTRODUCTION

To maintain a reasonable number of mesh points while

attempting to resolve the wide range of length scales asso-
ciated with turbomaz_inery passage flows, mesh stretching

is often employed. However, mesh stretching can have an

adverse effect on the convergence rate of a solution. This is

particularly true if large mesh stretching is used. Another

issue which impacts the convergence rate of finite volume

discretization formulations is the ratio of the largest surface
area of a cell to the smallest surface area of a cell. This ratio

is often referred to as cell aspect ratio. It is well known that

large values of cell aspect ratio can severely compromise the
solution convergence rate.

Code developers, from experience or analysis, [Celestina,

1999], developed rules which govern the range of mesh stretch-
ing of cell aspect ratio to be used with their codes. Users

are strongly encouraged to follow these rules in order to at-

tain solution convergence. However, in some applications,
strict adherance to the rules is not sufficient to ensure solu-

tion convergence nor does it guarantee adequate resolution
of flow details.

The motivation for the present work came from attempts

at developing a single mesh which is sufficiently fine to ac-

curately capture a number of key flow features which are
known to impact the aerodynamic performance of turbo-

machinery blading. This task becomes quite difficult if the

mesh is required to conform to the stretching and aspect
ratio rules and the number of mesh points or mesh cells are

being held constant in order to control solution times.

This difficulty associated with stretched meshes led to an

investigation of alternative meshing strategies. A promising
mesh generation strategy which can overcome the stated dif-

ficutly is based on a mesh patch strategy known as domain

decomposition. Domain decomposition employs a number

of mesh segmented domains ,i.e., mesh patches, which may

or may not overlap. The mesh in each segmented domain is

tailored so as to capture the dominant flow features within
the domain. Some examples of works in this area are pa-

pers by Berger et al. [1989]. Another is the CHIMERA

method originally developed by Steger et al. [1987] and

sinced refined by Liu [1994].

Brandt [1977] observed that certain forms of domain de-

composition can be viewed in the context of a multigrid
solution strategy. These particular types of domain decom-

position use a multigrid procedure to communicate infor-

mation between the various mesh patches. The resulting

methodology is called Segmented Domain Decomposition
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Multigrid Strategy (SDDMG).

The first implementation of a SDDMG procedure to in-

ternal flows was by Srinivasan and Rubin [1997]. They de-

veloped an adaptive approach to achieve optimal mesh reso-
lution of a number of internal flows. Their work showed that

the SDDMG method improved the resolution of the flow-

field throughout as compared to a solution obtained with a
single mesh using the same number of mesh pionts.

The objective of this work is to develop a Segmented Do-

main Decomposition Multigrid Strategy within the frame-

work of a three-dimensional finite volume, cell-centered scheme

which solves the Reynolds-Averaged form of the Navier-

Stokes equations for turbomachinery flows. A key objec-

tive being the capability to efficiently generate solutions

which are mesh independent. The strategy is to use uni-
form meshes in the blade-to-blade direction. For a three

dimensional simulation, a stretched mesh is used in the

span-wise direction. The uses of a stretched mesh in the

spanwise direction allowed a straight forward assessemt of
the usefulness of the SSMG procedure prior to a full 3D

implementation.

The main elements of the SDDMG procedure are: a

multiblock structure; a multigrid strategy; a mesh gener-

ation procedure; boundary conditions; and interface condi-
tions.

The next section discusses the above elements in more

detail. The SDDMG method is then applied to two cases.

The first is a compressor cascade and the second is a turbine
cascade. The intent of these simulations is to show the abil-

ity of the SDDMG method to converge to the underlying

flow features which control the aerodynamic performance

of turbomachinery blade rows. Where applicable the sim-

ulation results are compared to measurements. The final

section presents a summary of this work with conclusions
based on the results.

PROCEDURE

The SDDMG procedure solves the Reynolds-averaged

Navier-Stokes equations, i.e., mean flow equations_ using

a cell-centered finite volume formulation. On each mesh,

a Runge-Kutta iteration procedure is used to advance the

solution [Adamczyk, et al. 1990].

The present work uses the two-equation standard k - e

turbulence model of Launder and Spalding [1974] to esti-
mate the eddy viscosity. This turbulence model is a high

Reynolds number model which requires the use of wall func-

tions at solid surfaces and is valid from the outer region of a

turbulent boundary layer to the beginning of the log-layer.

The k and e equations are discretized in the same way

as the governing mean flow equations. The details of the

discretization can be found in Shabbir, et al. [1996].

A mesh generation code developed by Mulac [1986] gen-

erated all of the meshes used in this work. The code is a

general purpose turbomachinery mesh generator which gen-

erates a three-dimensional H-mesh by applying a series of

cubic spline fits to the geometric definition of the flowpath
and blade.

The elements necessary to develop and implement a do-

main decomposition strategy for a general, three-dimensional

rotating turbomachine are: a multiblock flow solver; a multi-

grid solution strategy; a multiblock mesh generation strat-

egy; a boundary condition strategy compatible with a multi-

block flow solver; and interface conditions compatible with
a multiblock flow solver.

Multiblock Structure. The multiblock structure for

the current work begins with a single global parent mesh.

This mesh is comprised of uniform cells and covers the entire

computational domain. A global parent mesh is shown in

Figure 1 in computational space.

The first level of refinement subdivides the global parent

mesh into sub-domain meshes. These segmented domains,

relative to the global parent mesh, are called child meshes.
The only rule that must be followed in refining a mesh level

is that the boundary mesh lines of a child mesh must be

coincident with a mesh line of the parent mesh. Figure

1 shows an example of two child meshes defined within a

global parent mesh in computational space. This example

shows a refinement in two mesh directions, however, the

SDDMG method allows for refinement in a single direction.

Every subsequent level of mesh refinement is done in a

similar manner. The child meshes on the previous mesh

level are called parent meshes on their mesh level. From
within these meshes, new child meshes are defined within

the boundary of the parent mesh.

The information that is needed to facilitate communi-

cation between a child mesh and its parent mesh is the
location of the child mesh within its parent mesh and the

type of refinement strategy used to generate the child mesh.

The location of the child mesh within its parent mesh is im-

portant as it determines the type of boundary conditions to

be applied to the child mesh. If a child mesh boundary is

coincident with an external boundary then the appropri-

ate external boundary conditions is used. If the child mesh
boundary is internal to the parent mesh, the appropriate

interface condition is applied.

Multigrid Strategy. The present work used a multi-

grid to computationally link a child and parent mesh. Within

the context of multigrid, a child mesh defines the fine mesh

and the associated parent mesh the coarse mesh. The steps

involved with multigrid [Brandt, 1977] are: an iteration pro-
cedure for solving the governing equations at each mesh

level; a prolongation operator for transferring information

from the parent mesh to the child mesh; a restriction op-

erator for transferring information from the child mesh to



theparentmesh.In thepresentwork,a Runge-Kuttait-
erationprocedureisusedto advancethesolutiononeach
meshlevel.A multigridprocedurealsorequiresan estimate
of relative truncation error between the child mesh and the

associated parent mesh. This truncation error estimate ap-

pears as a forcing function in the mean flow equations as-

sociated with the parent mesh. Inclusion of the truncation

error estimate in the mean flow equations associated with

the parent mesh ensures that the spatial accuracy of these

equations is consistent with the equations being solved on

the child mesh. Further details on the multigrid strategy

used in the present work can be found in Celestina [1999].

Mesh Generation Strategy. The domain decomposi-

tion approach presented here assumes that all meshes for a

simulation are generated before the calculation is started.

The primary reason for this is to preserve the integrity of

the geometry, primarily the blade surface definition, across

all mesh levels. The first step in this process is to gener-
ate a very fine mesh with uniform spacing for the entire

computational domain using the mesh generation code de-

veloped by Mulac [1986]. In constructing the finest mesh,
one must consider the distance from the solid surfaces de-

fined in terms of boundary layer wall units y+. This must

be consistent with the wall function boundary conditions of

the turbulence model. Of equal importance is adequate res-

olution of the leading edge and trailing edge regions of the

turbomachine geometry. For transonic blading, the region
over which a shock wave interacts with a boundary layer

also requires fine resolution.

As was previously stated, the only direction in which
the mesh is stretched is the radial direction. Uniform mesh

spacing is maintained in the blade to blade direction.

The fine global mesh is used to generate the global parent
mesh and all child meshes by discarding the appropriate

number of mesh points from the fine global mesh. The

effect of the mesh generation procedure on the definition

of the leading edge region of a high-speed compressor rotor

is shown in Figure 2. The global parent mesh, mesh level

1, generates a wedge-like leading edge. After five levels

of mesh refinement, the finest child mesh, mesh level 6,

provides a good definition of the leading edge region. The
axial definition of mesh levels 3 and 4 are identical because

they involve only a refinement in the pitch-wise direction.

Following the generation of all the parent and child meshes,

a procedure is applied to all the sub-domain meshes to en-
sure that the interface mesh lines of a child mesh are coin-

cident with a mesh line of the parent mesh. This procedure

is important as it simplifies the specification of the interface

boundary condition on the child mesh. The direction of the

projected area of the child mesh at the interface is identical

to the parent mesh and the value of the projected area is

half that of the parent mesh.

Boundary Conditions. The external boundary condi-

tions are applied at the boundary of the finest mesh, i.e.,

parent or child, coincident with the external boundary. At

solid surfaces, the external boundary conditions require that

there be no heat transfer and that the fluid velocity rela-

tive to the surface be zero. At the incoming flow boundary,

the external boundary condition sets the fluid total tem-

perature, total pressure and flow direction. At the exit of

the flow domain, the external boundary condition sets the

static pressure.

, At the external boundary for all other mesh levels, the
external boundary conditions incorporate terms which re-

flect the relative truncation error between the parent and
child mesh. The details associated with the implementation

of external boundary conditions can be found in Celestina

[1999].
Interface Conditions. To complete the implementa-

tion of the domain decomposition procedure, the interface

condition needs to be applied at a child mesh boundary not

coincident with an external boundary. Thus these interface

conditions are applied at the child mesh boundary coinci-

dent with a parent mesh surface. This is a line for two-

dimensional flows and a plane for three-dimensional flows.

The interface condition must conserve mass, momenta and

energy across the interface between the child and parent

mesh. The pressure must also be continuous across the

interface. These requirements are stated by the following

equations:

Pc -_ PP

_OV]C = [pV]p

PC -_ PP (1)

H0c = Hoe

where p is density, pv is the momentum vector, p is pressure
and Ho is the enthalpy.

Figure 3 shows an interface surface between two parent

mesh cells. The upper parent cell is within a child mesh

domain and contains four child mesh cells. The lower parent

mesh cell is outside but adjacent to a child mesh domain

and contains the child mesh "image" cells. The open circles

in Figure 3 represent the center of the parent mesh cells

and the open squares represent the center of the child mesh

cells. The open broken line squares represent the center of
the child mesh "image" cells. The physical location of the

right-hand side of Equation (1) is represented by the shaded

circle in Figure (1). The value of p, pv, p, and Ho at this

location is the average of p, pv, p, and Ho from the centers of
the parent mesh cells bordering the interface surface. The

physical location of the left-hand side of Equation (1) is
represented by the shaded squares in Figure 3. The value

of p, pv, p, and Ho at these squares is set equal to the value

of the corresponding variable located at the shaded circle.



Thevalueofp, pv, p, and H0 at the cell center of the child

mesh "image" cell is then obtained by linear extrapolation

using the value at the child interface surface and the value

of the center of the child mesh bordering the child interface

surface. The "image" cell values along with the interior cell

values are then used to compute the viscous stress at the
interface surface.

Implementation. The solution procedure is illustrated

in the schematic diagram in Figure 4, and the details can be

found in Celestina [1999]. The calculation begins on a mesh

denoted as GPM (Global Parent Mesh) in Figure 4. This

mesh is covers the entire computational domain and repre-
sents mesh level I. The next mesh is the child of GPM and

covers a portion of the computational domain. It should be

noted that the child mesh domain may be identical to the

parent mesh domain. This mesh represents mesh level II.

A preset number of Runge-Kutta iterations, indicated as N

iters, at the top of the diagram, are performed on GPM.

The resulting estimate of the solution is interpolated, indi-

cated as the broken line in the diagram, onto the child mesh

(mesh level II). A preset number of iterations are performed
on the child mesh. The updated estimate of the solution

is passed back to the GPM along with an estimate of the
relative truncation error associated with these two meshes.

Once again, N iterations are performed on the GPM. The

updated estimate of the solution is then passed back to the

child mesh. This procedure represents a V-cycle multigrid

solution strategy [Brandt, 1977].

The next level of mesh refinement is now introduced. The

estimate of the solution from the child mesh, level II, is in-

terpolated onto the next mesh level, level III. The child
mesh, level II, becomes the parent mesh while the level

III mesh becomes its child mesh. The Runge-Kutta itera-

tion procedure is initiated on the new parent mesh. After

a preset number of iterations, N iters., the estimate of the

solution is interpolated onto mesh level III. A set num-

ber of Runge-Kutta iterations are performed at this mesh

level. The updated estimate of the solution along with an
estimate of the relative truncation error associated with the

parent and child mesh is passed back to the parent mesh.

A set number of Runge-Kutta iterations are performed on
the parent mesh. At the completion of the iteration proce-

dure, the parent mesh is redefined as a child mesh (Level

II) associated with a parent mesh (GPM). The updated

estimate of the solution from the redefined parent mesh is

passed back to its parent along with an estimate of the
relative truncation error. Once again, N Runge-Kutta it-

erations are performed on the parent mesh. Following a

V-cycle multigrid strategy, the updated estimate of the so-

lution is passed back to the child mesh, level II. At mesh

level II, N Runge-Kutta iterations are performed and the

subsequent estimate of the solution is passed onto the child

mesh (mesh level III) of mesh level II. After a set number

of Runge-Kutta iterations are completed on the child mesh,

the procedure checks to see if there is another mesh level

within mesh level III. If so, the mesh level is advanced

and mesh level III becomes the parent mesh for mesh level

IV. The above procedure is then repeated involving all

the previously defined mesh levels. This procedure is con-
tinued until all of the predetermined mesh levels have been

included. Upon inclusion of the last mesh level, the solution

strategy is terminated when the change in the estimated so-

lution (based on two successive passes through the solution

strategy) is within a given tolerance.

If, upon examination of the converged solution, it is felt

that more resolution is needed in a given flow region, a

finer mesh can be generated spanning the region. This new

mesh is introduced at the appropriate mesh level and the

solution strategy restarted incorporating the new mesh. An

example of this is discussed in the results section where

two additional mesh refinements are added to a converged
solution.

RESULTS

Two geometries are presented to test and validate the

SDDMG method. The cases are: a compressor cascade and

a turbine cascade. The geometry for the two cascade cases
include solid end-walls. Both cases have a limited amount

of experimental data available. Comparisons to this data

are made where possible.

ARL Compressor. The ARL cascade [Zierke and Deutsch,

1989] is shown in Figure 5. This cascade is made up of

double-circular-arc airfoils typical of a highly loaded com-

pressor blade. From the test report, the chord length c is

given as 228.6 mm and the cascade solidity is 2.14. The

aspect ratio is 1.61. The incoming flow is subsonic with a

velocity of 33 m/s and the Reynolds number based on airfoil

chord is 501,000.
To limit the influence of side-wall and end-wall bound-

ary layer growth on the measurements, suction was applied

upstream of the cascade inlet plane on all walls. To simu-

late the test set-up, the AR of the simulated geometry was

set to 8. This is done primarily to limit the impact of the

side-wall and end-wail boundary layers on the core flow.

Since the geometry of the cascade airfoils is two-dimensionai

and the code used in this study is written in cylindrical

coordinates, the hub and shroud, representing the cascade

side-wails, must be placed at a very large radius. In addi-
tion, the ratio of the hub radius, Rh, and the shroud radius,

R,, must be near one. These two requirements yield a ra_

dins ratio R* = _R, near zero. In this study, the hub
to shroud radius was set to 0.947 yielding a radius ratio of
0.053.

The test report presented data for three incidence angles.



Thesimulationwillonlyconsiderthedatapresentedforan
incidenceangle of -1.5 °.

The meshes used in the simulation of the ARL compres-

sor cascade were of uniform spacing in the cascade plane. In

the radial direction, the mesh spacing was non-uniform in
order to resolve the side-wall boundary layers. The meshes

on a cascade plane located at midspan are shown in Figure
6. A total of seven mesh levels are used in the present sim-

ulation with six sub-domain mesh levels. Table 1 gives a

summary of the mesh sizes:

Mesh Axial Radial Tangential Number
Level Points Points Points _fMeshes

1 61 41 21 1

2 81 41 11 2

3 121 41 ii 2

4 201 41 11 2

5 361 41 II 2

6 41 41 11 4

7 41 41 11 4

Table 1. SDDMG Mesh Refinement Schedule for ARL Com-

pressor.

The global parent is Mesh Level 1 and contains 61 axial

points with 21 of these points distributed uniformly along

the chord of the airfoil. The inlet and outlet flow planes

are set one chord length upstream and downstream, respec-

tively, of the cascade inlet and exit planes. The number

of radial mesh planes is fixed at 41. The spacing between

these radial planes is varied in order to resolve the side-wall
boundaries and is maintained for all sub-domain meshes.

In the global parent mesh, 21 equally spaced planes are
distributed across the cascade passage. The first set of sub-

domain refinements, mesh level II, starts at 50% chord up-

stream of the cascade inlet plane and ends at 50% chord

downstream of the cascade exit plane. This refinement ex-

tends 25% of the pitch into the flow passage from either
side of the blade surface. The third level of mesh refinement

starts at 25% chord upstream of the cascade inlet plane and

ends at 25% chord downstream of the cascade exit plane and

extends 121/2% into the flow passage from either blade sur-

face. This refinement strategy is repeated for the next two

mesh levels with mesh level IV starting at 121/2% (half

of 25%) upstream of the cascade inlet plane and ending at
121/2% (half of 25%) downstream of the cascade exit plane

and extending half of 12112% into the flow passage from
either blade surface. Mesh levels 6 and 7 are used to refine

the region of flow surrounding the leading edge and trailing

edge. These two sub-domains are illustrated in Figures 7(a)

and 7(b).
The simulation of the ARL cascade was done for an in-

cidence angle of zero degrees. This incidence angle was

established by matching the blade pressure distribution as

predicted by a potential flow code [McFarland, 1982 and

1984] to that measured. It was felt that this procedure

removed any issues associated with flow periodicity in the

experiment.

Figure 8 shows contours of velocity magnitude at the

midspan plane of the cascade. The contours of velocity mag-
nitude remain continuous as they pass between the various

mesh levels. The wake is seen to decay in a smooth man-

ner with distance from the trailing edge. Figure 9 shows

velocity vectors in the region of the suction surface trailing

edge. The flow is separated from the suction surface in this

region. The zero velocity line is shown in the figure and

is seen going smoothly through two mesh levels with the

separation region extending across three mesh levels. The
smooth transition of the flow from one mesh level to another

is a direct result of the multigrid procedure.

The SDDMG procedure can converge to a mesh inde-
pendent solution in critical flow regions such as the region

surrounding the leading edge. The pressure field in this

region of flow controls the initial development of the blade
boundary layers. Another flow region which is important to

resolve is the region of flow near the suction surface of the

blade trailing edge. The flow in this region plays a major

role in establishing the flow blockage and the blade circula-

tion. To show that the solution in the leading edge region

for the ARL cascade is independent of mesh, the blade pres-

sure distribution, in terms of a pressure coefficient, Cp, for
the various mesh levels is plotted as a function of distance

from the leading edge in Figure 10. This shows that as the
mesh refinement is increased (level 1 being the coarsest and

level 7 the finest), the surface pressure distribution asymp-
totes to a curve which is independent of mesh level, hence

a mesh independent result. In addition, note that the dis-
tribution associated with all mesh levels coarser than the

finest, level 7, appear to be "smooth" estimates of the fine

mesh result. This being the case even for the coarsest mesh

(level 1) in which leading edge is viewed as a wedge. These
"smooth" estimates of the fine mesh result is a direct result

of the multigrid strategy underpinning the SDDMG proce-
dure.

Figure 11 shows the axial velocity plotted as a function

of distance away from the suction surface for the finest 4
mesh levels. The chordwise location is near the suction

surface trailing edge at about 90% of chord. The finest
mesh is level 5 and the coarsest mesh is level 2. The velocity

profiles obtained from the solution on each mesh level form

a smooth velocity profile. The profiles on the finest two

mesh levels, levels 4 and 5, are nearly identical and indicate

that the solution in the region of the suction surface trailing

edge is nearly mesh independent.

The next two figures show comparisons with experimen-

tal data. Figure 12 shows the blade surface pressure dis-



tributionasa functionof bladechord as computed and

measured. As noted above, the incidence angle for the sim-
ulation is zero degrees while that reported by Zierke and

Deutsch [1989] is -1.5 degrees. The difference compensates
for incoming flow differences between the simulated cascade
with an infinite number of blades and the cascade in the ex-

periment whose blade count is five. The agreement between

the simulation result and the experiment is excellent. The

final result for the ARL cascade, Figure 13, shows the pro-

file of the axial velocity across the pitch of the cascade. The
axial location is 32.9% of the chord downstream of the cas-

cade exit plane. Both simulation results and measurements

are shown in Figure 13. The simulation results incorporated

all seven mesh levels. The agreement between the simula-
tion results and measurement are excellent. Since it was

shown that the simulation results are nearly independent

of mesh, the difference between measurement is due to ge-

ometric differences between the physical cascade test setup

and that specified in the simulation, experimental error, or

errors introduced by the turbulence model.
VKI Turbine Cascade. The VKI turbine cascade air-

foil geometry is shown in Figure 14. It is representative of
a highly loaded turbine nozzle. The aerodynamic perfor-

mance [Arts, et al. 1990] of a cascade of these airfoils was
assessed in the Von Karman Institute short duration Isen-

tropic Light Piston Compression Tube facility. The chord

length of the tested airfoils is 67.647 mm and the cascade

solidity is 1.176. Additional details of the cascade geome-

try can be found in Arts, et al. [1990]. All simulations
were performed for an isentropic exit Mach number of 0.85.

The experimental setup did not allow for the removal of

the side wall boundary layers. Thus the cascade is simu-

lated with the side walls included. Thus, the simulation is
three-dimensional.

A cascade plane perspective of the midspan mesh used

in the initial simulation is shown in Figure 15. On each

cascade plane, the mesh has seven mesh levels. These sub-
meshes are identical for all cascade planes. In the spanwise

direction, there are 41 cascade planes. They are spaced in

the spanwise direction so as to resolve the side wall bound-

ary layers.

Table 2 gives a summary of the mesh sizes:

Mesh Axial Radial Tangential Number
Level Points Points Points ffMeshes

. 1 61 41 21 1

2 81 41 11 2

3 121 41 Ii 2

4 I01 '41 ll 2

5 i01 41 II 2

6 21 41 11 4

7 21 41 11 4

Table 2. SDDMG Mesh Refinement Schedule for VKI Tur-

bine.

Mesh level 1 is the global parent mesh. The first two
mesh levels, levels 2 and 3, are axial and pitchwise refine-

ments of the global parent mesh. Mesh levels 4 and 5 are
pitchwise refinements only and are employed to resolve the

blade boundaries. Finally, mesh levels 6 and 7 are designed

to better define the flow in the neighborhood of the leading

and trailing edge.
A series of simulations showed that the fiowfield was two-

dimensional between 10% and 80% of span and thus only

results for the midspan cascade plane will be reported. Fig-

ure 16 is a plot of the Mach number contours at midspan.

The contours remain continuous as they pass through the
various mesh levels. Figure 17 shows the velocity vectors in

the region of the blade trailing edge. There is no evidence
of these velocity vectors being discontinuous. Indeed, one

can clearly see two counter-rotating vorticies formed by the

merger of the flow the suction and pressure surface.

A plot of the local loss coefficient, defined as

X -- p,2 1

where p is pressure, Pt is the total pressure and the indice

1 denotes the inlet flow plane and 2 the measuring plane at

142% chord downstream of the cascade inlet plane is shown

as a function of pitch in Figure 18. Both simulation and ex-
perimental results are shown. The agreement appears good,

however, the simulation results overpredict the loss at the

center of the wake. To ascertain whether this overpredic-

tion of loss is numerical in origin, a further refinement of

the flow neighboring the suction surface was attempted. At

the location of minimum suction surface pressure, the mesh

refinement reduced the value of y+ at the centroid of the

first cell from approximately 75 to approximately 20. The

resulting velocity profile through the suction surface bound-

ary layer is shown in Figure 19. Shown on the figure are

plots associated with the three mesh levels. The finest mesh
is level 9 and the coarsest mesh is level 5. Mesh level 8 rep-

resents the first refinement of mesh level 5. The plots on

Figure 19 show that the results for mesh levels 8 and 9 are

nearly identical. This indicates that the solution through

the suction surface boundary layer in the vicinity: of mini-

mum pressure is nearly mesh independent. The simulation

results presented in Figure 18 are associated with the veloc-

ity profile for mesh level 5. Note that the results for mesh
level 5 fail to resolve the outer region of the suction surface

boundary layer. The impact of the refined definition of the
suction surface boundary layer on the local loss coefficient

is shown in Figure 20 as a function of pitch. The plots from



Figure18arerepeatedin thefigure.Theaddedrefinement
appearsto havelittle impactontheestimatedlossat the
centerof thewake.Therefinementdoesappearto yield
a sharperlossprofilewith the lossprofilefor level8being
nearlythatfor meshlevel9. Thusonecanstatethat the
lossprofilesarenearlymeshindependent.Anydifferences
betweenthesimulationandexperimentalresultis dueto
experimentalerror(notetheexperimentallosscoefficientis
greaterthan one in the core flow region), a difference be-

tween the simulated geometry and that of the experiment,

or the modeling of turbulence.

For both the ARL and VKI cascade simulations, the SD-

DMG procedure did not adversely impact the stability of
the Runge-Kutta iteration strategy. On the contrary the

stability of the Runge-Kutta procedure appeared to be im-

proved by the SDDMG procedure. This positive impact on
stability appears to be related to the elimination of the ad-

verse effects of mesh stretching by the SDDMG procedure.

SUMMARY AND CONCLUSIONS

Accurate predictions of the aerodynamic performance of

turbomachinery blading requires resolution of flow features

near the leading and trailing edges of blades, boundary lay-
ers and clearance flows. To obtain the required flow detail,

grid cells are clustered in regions of high flow gradients and

then stretched to fill in the remaining flow region. This of-

ten results in grids with very high aspect ratios. For CFD

codes which employ a Runge-Kutta based iteration stat-

egy, this often leads to numerical stability problems. To
circumvent these stability problems and still have the abil-

ity to resolve features associated with high flow gradients, a

segmented domain decomposition multigrid (SDDMG) pro-
cedure was developed. The SDDMG procedure was imple-

mented in 2D to tests its ability to produce grid independent

solutions and enhance the stability of a Runge-Kutta based

interation stategy.

The SDDMG procedure was used to simulate a compres-
sor and turbine cascade. Each case was used to show a

different feature of the SDDMG procedure. Both simula-

tions yield results which were grid independent. Results

were shown that illustrated the ability of the SDDMG pro-

cedure to capture the flow details in the neighborhood of a

compressor blade leading edge and a turbine blade trailing

edge. In addition, it was shown that the SDDMG procedure
yielded velocity profiles associated with blade boundary lay-

ers which were grid independent.

Comparison of simulation results to expermental data

showed the SDDMG procedure was predicting solutions that

are consistent with the experimental data. Indeed since the

simulation results axe, for all practical purposes grid inde-
pendent, any difference between simulation and experiment

is due to geometry differences, experimental error, or the

modeling of turbulence.

Based on the results from this study the SDDMG pro-

cedure is a viable alternative to grid stretching to resolve

the flow features which control the performance of turboma-

chinery blading. An implementation of the SDDMG proce-
dure in 3D is recommended.
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Fig. 1. Global parent mesh with two child meshes in com-

putational coordinates. The dashed line depicts the bound-
aries of the child meshes.
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Fig. 8. Contours of velocity magnitude at midspan.

Fig. 9. Velocity vectors near the suction surface trailing

edge midspan for SDDMG.
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